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The Structure of a-Gallium and Its Relationship to Deltahedral Clusters 

Ulrich HauSermann,* Sergei I. Simak, Igor A. Abrikosov and Sven Lidin 

Abstract: We present idealised geometri- 
cal models for the r-Ga and 8-Ga struc- 
tures based on two differently distorted, 
corrugated 36 nets. We investigated the 
structural stability of two sets of two-di- 
mensional and three-dimensional model 
structures consisting of these corrugated 
nets as a function of the net puckering. We 
used the simple tight-binding (TB) Hiickel 
model with the structural energy differ- 
ence theorem and the advanced full-po- 

Introduction 

tential linear muffin-tin orbital (FP- puckering angle that corresponds well to 
LMTO) method in the framework of lo- the situation in the experimental r -Ga 
cal-density functional theory. Both meth- structure. The geometrical model of the 
ods show the existence of an optimum x-Ga structure follows the building prin- 

ciple of terminally coordinated deltahe- 
dral clusters, extended to two-dimension- 
al structures. The chemical bonding in 
a-Ga is interpreted in terms of multicentre 
bonding within the corrugated 36 nets and 
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Owing to their structural diversity, compounds exhibiting multi- 
centre bonding form one of the most fascinating areas in inor- 
ganic chemistry, covering both molecular units and infinite 
solids." 3 '1 Classical examples are the closed deltahedral clusters 
formed by B or Ga atoms. These clusters occur as isolated units 
in boranes or form three-dimensional frameworks in main 
group metal borides and g a l l i d ~ s . ~ ~ .  41 Characteristically the 
cluster-forming atoms are coordinated by an additional atom, 
which is oriented radially outwards from the polyhedron. lead- 
ing to a (1 + 3), (1 + 4) or (1 + 5 )  coordination depending on the 
kind of polyhedron. 

The electronic structure of those clusters is qualitatively ex- 
pressed by Wade's rules.['] According to Wade the sp bonding 
electronic states of a terminally coordinated closed deltahedron 
with n vertices (n  2 5) are divisible into n + 1 framework bonding 
and n terminally bonding states. In the closed-shell case (4n+ 2) 
electrons occupy these bonding states. This corresponds to two- 
electron - two-centre (2e 2c) bonding of the terminal atoms and 
multicentre bonding between the atoms forming a polyhedron. 
Assuming that the terminal atoms are hydrogen, the optimum 
valence electron concentration (VEC) is (4+ 2/n) electrons per 
X-H unit. Figure 1 shows the relationship between VEC and 
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two-electron- two-centre bonds connect- 
ing these nets. 
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Figure 1 Three examples oftei-minally (H) coordinated closed deltahedra) clusters. 
I n  the octahedron (left) all cluster-forming atoms have (1 f4 )  coordination, and in 
[he icowhcdron (right) (1 +5) coordination In thc dodecahedron (centre) ( 1  +4)  
and (1 + 5 )  coordination occurs. Thc relationship between the optimum VEC (no. 
of valence electrons per X - H unit) of a clustcr and the number of vertices n is given 
by VEC = (4+2!n) as expressed in Wade's rules. Known representatives following 
this rule are indicated by hlack circles on thia curve. 

the number of vertices n in the series of closed deltahedra. The 
contribution of 2/n to the VEC stems from the lowest-lying 
electronic state. This nondegenerate state is characteristic of a 
deltahedral cluster and has highest symmetry with equal contri- 
bution from all polyhedron-forming X atoms. 

It is interesting to speculate whether it is possible to realise the 
asymptotic situation of one terminal-bonding and one frame- 
work-bonding state per X-H unit leading to an optimum VEC 
of four. An infinite value for n is equivalent to a two-dimension- 
al net, and terminal bonding may result in a three-dimensional 
structure on the borderline between metal and nonmetal. In this 
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article we identify the cc-Ga structure to be-geometrically and 
electronically-such a two-dimensional continuation of the ter- 
minally coordinated closed deltahedral clusters, in agreement 
with suggestions of von Schnering and Nesper.'" We first out- 
line the geometrical building principle of idealised deltahedral 
clusters and derive two-dimensional (2 D) and three-dimension- 
al (3D) model structures obeying this principle. The model 
structures consist of (1 + 6)-coordinated atoms. In the second 
part of this work we study the structural stability of the model 
structures with the simple semiempirical tight-binding (TB) and 
the ab-initio full-potential linear muffin-tin orbital (FP-LMTO) 
methods. The TB method allows additionally the investigation 
of the influence of the VEC, but does not yield reliable numeri- 
cal results. However, a modified TB model has been applied 
succesfully for the geometry optimisation of cc-Ga and some 
other selected  structure^,^'^ and it is interesting to compare re- 
sults from this method with those obtained from accurate state- 
of-the-art density-functional calculations. 

Structural Relationships 

When building up a closed convex polyhedron with equilateral 
triangles only (corresponding to a deltahedral cluster with all 
bond lengths equal), one finds eight possible solutions. The 
smallest representative in this series is the tetrahedron (1) with 
four vertices, followed by the trigonal bipyramid (2), the octahe- 
dron (3), the pentagonal bipyramid, the dodecahedron (bis- 
disphenoid) (4), the tricapped trigonal prism, the bicapped 
quadratic antiprism and finally the icosahedron (5) with twelve 
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vertices. In these polyhedra a vertex can be shared by either 
three, four or  five triangles, and thus a particular vertex has 
either three, four or five neighbours. In the following we call an 
ensemble of three, four or five triangles defining a vertex a 
tetrahedral cap (6), an octahedral cap (7) or  an icosahedral cap 
(8), respectively. The Platonic polyhedra tetrahedron, octahe- 
dron and icosahedron each contain only one kind of vertex; this 
implies that all angles between connected triangles (the dihedral 
angles) are equal. With variable dihedral angles polyhedra with 
two symmetrically different vertices may be built up. For  ex- 
ample, the trigonal bipyramid has three three- and two four- 
coordinated vertices and the dodecahedron (bisdisphenoid) four 
four- and four five-coordinated vertices. 

Naturally the curvature o f a  polyhedral cap decreascs with the 
number of triangles. It is not possible to  construct a convex 
polyhedral cap with six equilateral triangles, and the condition 
of equal dihedral angles leads to the planar 3' net. With varying 
dihedral angles one obtains corrugated 2D nets, and the sim- 
plest distortion variants are shown in Figure 2. In variant I adja- 
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Figure 2. Left-hand panel: Distortion variants ofthc 3' net consisting ofcqiiilateral 
triangles. Darker circles are thc same distance above the undlstorted 3" nct plane ;I? 
the brighter circles are below. The net of highcr symmetry (top) is called \ a r i a n t  I ,  
that of lower symmetry (bottom) variant 11. Right-hand panel: Terminal coordina- 
tion of the net-forming atoms. The corrugated nets arc viewcd along thc L( a m .  The 
angle 7 quantifies the puckering of the 3' nets. The terminal bonds i n  v i i m n t  I 1  
(bottom) are tilted rrom the normal of the mean 3' nct plane by the angle 6. The 
different (I f 6 )  coordinations of the net-forming a t o m  arc shown. 

cent straight chains and in variant I1 adjacent zigzag chains of 
atoms are alternately lowered and raised by the same amount 
with respect to  the undistorted 3' net plane. Variant 1 has the 
plane group symmetry p2mm with two atoms in the rectangular 
unit cell, whereas in variant TI the mirror planes perpendicular 
to one axis are lost and the plane group symmetry reduces to 
pm with four atoms per unit cell. The puckering angle 7 defined 
in Figure 2 describes the deviation from planarity. The poly- 
hedral caps (6-8) with all dihedral angles smaller than 180" 
transform in variant I into an arrangement where six connected 
triangles form two coplanar sets (in which the dihedral angles 
are equal to 180"). The corresponding ensemble of variant I1 
exhibits a convex and a concave part on the same surface 
(Figure 2). 

Analogously to in the closed deltahedral clusters in Figure 1,  
the net-forming atoms may be coordinated terminally. Thcse 
terminating atoms are arranged in such a way as to minimise 
interaction with the net-forming atoms. Thus, the sum of dis- 
tances of a terminating atom to all net-forming ones was chosen 
to be a maximum for a given bond length. With this condition 
the terminal bonds of variant I1 are not perpendicular to the 
undistorted 3' net plane, and the tilt angle 6, defined in Figure 2, 
describes this deviation. In Figure 3 the nonlinear relationship 
between this angle and the puckering angle y is shown. Whereas 
deltahedral clusters have no structural freedom for a fixed bond 
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Figuis 3 .  Kclation between the puckering angle ;.and the tilt angle b in the terniiiial 
coordinated nets of variant T I  (cf. Figure 2).  The cross indicate7 the values in thc 
experimental 1-Cia structure 

length, their 2 D analogues shown in Figure 2 show v;iriable 
puckering an& y. 

In order to build up 3 D structures the 2 D units are stacked 
and linked through the terminal bonds, which leads to or- 
thorhombic structures (Figure 4). In case of variant I the space 
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t iaure 4 3 D model structures with Iininm synimctry (left-hand pinel) and <'J?WLI 

syiiimetry (right .hand panel) obtained by stacking of the corrugated nets of vari- 
lint I and 11. respectively. with puckering angles of 0 (top). 25 (centre) and 35 
(bottom). Four-. five- and aix-menibei-ed rings emerge as ncw 5tructiir;iI elcnienth 
(defining atonib are rcpresented its dark circles). The local ( 1  1 6 )  coordination i \  
emphasised (the Ciw(i structure with ; = 25 does not have the appropriate tilt 
angle) 

group is Zmmm with four atoms in position 4g (0,j~,O). For the 
3 D structure of variant 11 the space group in the standard set- 
ting is Cmcu with eight atoms in position Sf ( O J , ~ ) .  For a pair 
of I m m m  and Cmca structures with the same geometrical 
parameters (i.e. puckering angle, distance in the corrugated 3" 
net, stacking distance), the latter always has the higher density. 
I t  is important to note that a stacking of the Corrugated 36 nets 

- 
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of variant I1 with the appropriate tilt angle for the terminal 
bonds (Figure 3) will automatically fix the stacking distance at 
a certain value. This causes an unrealistically long bond lenth 
for the terminal bond in structures with lower values of y ( < 25') 
and an unrealisticly short distance in those with high y values 
(> 35"). For  a puckering angle of 32.5' the corresponding tilt 
angle is 17.6', (Figure 3), and variant I1 represents an idealised 
geometrical model of a-Ga, the low-pressure and low-tempera- 
ture phase of gallium (space group Cmca, u = 4.5192, 
h =7.6586, c = 4.5268 8, a t  298 K;  atomic position Sf (0.y.z) 
with y = 0.1549 and z = 0.0810).[81 The structure is shown 
in Figure 5 .  In the corrugated 3' net, three slightly different 

Figui-e 5. The structure ofr-Ga. Left: The 2 D building block is a corrugated 3'' net 
parallel to the (010) plane. Darker circles are thc same distance above the mean 
plane orthe corrugated 3'nct as the brighter circle5 are below Three distances occur 
i n  thecorruptcd nets: B = 2.691. C = 2.729, D = 2.786 A. The coordination b) the 
adjacent nets introduces a short distance A = 2.484 A. Right: View approximatel) 
along [ 1001 showing the stacking of the  coi-rugated 3" nets along the h zyis thi-ough 
shorl typc .4 bonds (2 483 A ) ,  The ( 1  - t 6 )  coordination of a11 atom is eniphasised. 

nearest-ncighbour distances lie in the narrow range between 
2.69 (B)  and 2.79 8, (D). The distance A between G a  atoms from 
adjacent nets is 2.483 8, . The angle y in the zigzag chain of B 
bonds is 32.8", and the angle between the bond A and the h axis 
perpendicular to the corrugated 36 net is 17.2". The agreement 
with the idealised model is remarkable (cf. Figure 3). Thus, with 
the short distance A designated as a terminal bond, the a-Ga 
structure obeys the building principle of ideal deltahedral clus- 
ters, wherc the terminally bonded atoms rninimise their interac- 
tion with other polyhedron-forming ones by means of their radi- 
al orientation. Following this principle, the increase in the 
coordination number from (1 +5) of an icosahedral cap to 
(1 +6) is accompanied by the formation of 2 D  nets, thus ex- 
plaining the local coordination of the G a  atoms in the r-Ga 
structure. This interpretation is different from that of Nesper 
and von Schnering,['] who divided the corrugated 36 net into the 
x-Ga structure in units of distorted (1 + 5 )  coordinated icosahe- 
dral caps and tetrahedra. 

The structure resulting from the stacking of the 2D nets of 
variant I does not represent a known elemental structure, but 
occurs as thc partial structure of the major component in inter- 
metallic compounds with the MoPt, structure. In this structure 
type the voids along the u axis are occupied yielding a binary 
compound with composition 1 : 2. Interestingly, the Immm struc- 
ture with a y of 49" can be transformed into an idealised p-Cia 
structure by a slip operation"] in every plane (020) with the 
displacement vector 2 = (O,O,'/,) (Figure 6). The corrugated 36 
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The sum is over all atomic orbitals of the system. Because of Equation (3)ii'I 
the constraint AE,,, = 0 is equivalent to Ap2 = 0. Thc quantity p 2  is 

(3  

called the second moment,[i51 and the equality of p 2  between different struc- 
tures can be achieved by isotropically changing the volumes of the structui-es 
until their second moments match that of a reference structure (sccontl mo- 
ment scaling[L61). Differences in thc highcr moments p, = J*  ;;"ir(;:)d[; of 
these structures can explain the behaviour of their structural cncrgy 
 curve^.[^'^ 

p 2  = J ? z 2 n ( c ) d s  = z , , ,H$ x Ere,, 

As reference structure for the p 2  scaling in the 2 D case we chose the corrug;it- 
ed 3' net of Ihe z-Ga structure. This net w a s  coordinated with termniil H 
atoms at experimentally based distances of 1.6 A in the direction of the net 
linking A bonds in the sc-Ga structure. Nets of varianta I and I I  wcrc con- 
structed with puckering angles of 0, 5, 10. 15, 20, 22.5. 25, 27.5. 30, 32.5, 35.  
40 and 45". The nets were terminated with H atoms in the way described. and 
the bond length was maintained at a value of 1.6 8, while adjusting the 
Ga-Ga distance i n  the net during the second-moment scaling. For the 3 D 
structures the cxpcrimental rw-Ga structure served as  reference structure fbr 
the p2 scaling. Only the interlayer bond length was varied in the scaling 
procedure. and the parameters of the final 3 D  structurcs arc prcscnted in 
Tables 1 and 2. For the 2 0  structures a 100k-point mesh and for the 3 D  
structures a 64 k-point mesh of the irreducible wedge was used. 

+ol---" I 

Figure 6. Top: A - crystallographic slip operation in the planes (020) with the dis- 
placement vector R = (0,0,'/J transrorms the Inrmm model structure consisting of 
corrugatcd 3' net with a puckering angle ol'49' (left) to an idealised model of thc 
p-Ga structure. The stacking of the corrugated 3' nets in the monoclinic /&Ga 
structure (right) introduces zigzag chains defining the shortest distances (labelled A )  
in this structure ( A  = 2.689 A).  Bottom: in  the corrugated 3' net offl-Ga (parallel 
lo the (010) plane) thrce different distancca occur: B = 2.771, C = 2.872, 
D = 2.916K. The atoms in p-Ga have a local (2+6)  coordination (right). 

nets of variant I remain unchanged, but the terminal bonds are 
replaccd by zigzag chains running along the c axis. The Zmmm 
structure may be too open for a metal, so that it collapses ac- 
cording to this slip operation, which changes the nearest-neigh- 
bour coordination of the atoms from (1 + 6) to (2 + 6). In the 
real p-Ga structure (space group C2/c, a = 2.7713, h = 8.0606, 
I' = 3.3314 A, 1 = 91.57"; atomic position (O,y,1/4) with 
4' = 0.131)['"' three different distances between 2.77 and 2.92 A 
occur in the corrugated 36 net, and the deviation from the model 
with only equilateral triangles in this net is greater than in the 
x-Ga structure. The distance in the zigzag chains (2.69 A) is not 
much shorter than those in the corrugated 3' net, owing to the 
increase in the coordination number. 

Calculational Methods 

TB ealeulations: Eigenvalues were obtained by solving the Huckel secular 
determinant l H , , ( k )  - ;:[I = 0 with the unit matrix l a n d  the atomic paranie- 
ters of Ga  (HA+ = - 14.58 eV, H,,,, = - 6.75 eV, iAr = 1.77, cup = 1.55) 
and H ( H I , , ,  = -13.6 eV, I,, =1.3).  The resonance integrals were approxi- 
mated by the Wolfsberg-Helmholtz formula Hi, = KS,,(H,, + Hi,) with 
K = 1.75.["1 

In order to compare structural cnergy differences within the TB formalism we 
applied the energy difference theorem of Pettifor [Eq. (1)]."*] Eb""" has the 
form given by Equation (2), where ni(&) is the partial density of states 

l A , : r c p  = " (1) 

( 2 )  

of the atomic orbital i, which we calculated from a Mulliken population 
analy~is ."~ '  ci is the corresponding orbital cnergy Hi, and E~ the Fermi energy. 

+ 

AE'o' AEbo"" 

E b m d  
(CF) = XS",(. - sJn,(s)dc: 

Table 1. Parameters of the model structures with Innuin >ymnictry 

Angle (') ( I  (A) h (A) (A)  I 

n 2.7305 5.8898 4 1294 0.25 
5 2.7243 5.9730 4.7006 0 2 2 8  

15 2.7177 6.3704 4.5468 0.2022 
20 2.7166 6.6519 4.421 5 0 1896 

25 2.7174 6 9743 4 1657 0.  I787 

30 2.72 I3 7.3014 4.08 I9 0. I 693 

10 2.7202 6.1360 4.6399 0 2107 

22.5 2.7166 6 XI46 4.3471 n. I 810 

27.5 2.7191 7 1360 4 1774 0.1738 

32.5 2.7218 7 4x69 3.9760 0 1654 
35 2.7292 7.6351 3.X722 0.1612 
40 2.7453 7.9682 3.6425 0.1541 
45 2.7745 8.3085 3.3980 0.1478 

Table 2. Parameters of the model structures with Cwmr symmetry. 
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FP-LMTO Calculations: Reliahlc energy differences between the 3 D struc- 
tures (Table 1 and 2 )  and the expcrimental sc-Ga structure wcrc calculatcd 
with the FP-LMTO method,[iR1 which is a powerful all-clcctron tcchniquc for 
the calculation of different properties of crystalline materials. The space was 
divided into so-called muffin-tin spheres (MTS) surrounding atomic sites a n d  
interstitial region hctwccn them. The charge density and potential were al- 
lowed to have any shape inside MTS as well as in the interstitial region. The 
basis set. charge density and potential were expanded in spherical harmonic 
series within nonoverlapping MTS and in Fourier series in the interstitial 
region. The basis set of augmented linear muffin-tin orbit:ils[l"was used. The 
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t a i l \  of the basis functions outside [heir parent spheres were linear combina- 
tions of Hankel functions with negativc kinetic energy. The basis set included 
I d .  4s. 4 p  and 4d orbitals on the Ga sites. All states were contained in the 
same energy panel with the 3 d orbitals treated as a pseudovalencc state in an 
ener-gy set different from the other basis functions. We adopted a double basis 
where we used t u o  different orbitals of /.inl character, each connectcd in a 
conrinious and differentiable way to Hankel functions with different kinetic 
energy. The spherical harmonic cxpansion of the charge density. potential, 
and  basis functions were carried out to / = 4. The integration over (lie Bril- 
louin /one was performed by the special point  ampl ling""^ with a Guss i an  
smearing of 10 m l i y  and using 282 and 171 li-points in thc irreducible wedgc 
Ibr the Cnim and Imn7m model structures. respectively. The exchange and 
correlation potential was treated in the local density approximation using the 
voii Barth -Hedin p ~ i r a i n c t r i s a t i o i ~ . ~ ~ ~ ~  

Results and Discussion 

2D structures: Figure 7 shows the calculated TB bond energies 
for the two terminally coordinated distortion variants of the 36 
nct as a function of the puckering angle and the VEC' in a 
contour-map representation. Qualitatively the maps look alike. 
The optimum VEC for the uncorrugated nets is slightly above 
four electrons per Ga-H unit and decreases to exactly four a t  

Puckering angle [O] 

Puckering angle [O] 

Figure 7 .  TB bond energy as a function of VEC and 7 for the 2 I) nets of variant 1 
(top) and variant I1 (bottom) (cf. Figure 2 ) .  The location of the minima are indicat- 
ed by solid circles. Contour lines are calculated relative to the minima; the difference 
hrtwcen two lines is 0.2 eV. 

the optimum puckering angles with lowest bond energy. This 
puckering angle is about 25" for variant I and 22.5' for vari- 
ant 11. At highcr puckering angles the bond energy increases 
again while the corresponding optimum VEC shifts rapidly to 
lower values ( < 4). This effect is considerably more pronounced 
in the case of variant 11. Figure 8 summarises the bond energies 

3.0 
0 Cmca model structures I 

Puckering angle ["I 
Figure 8. TB bond energy for the 2 D  net? of variants 1 and I 1  at optimum values 
0 1  VEC as a funtion of ;. 

at the optimum VEC as a function of the puckering angle. Until 
the optimum puckering angle is reached the curves of variant I 
and 11 are very similar and the minimum value for Ebond is not 
significantly different. Within the TB approach the two distor- 
tion variants appear as  energetically equivalent solutions, and 
the optimum VEC of four is indeed the expected asymptotic 
value in the context of Wade's rules (Figure 1).  

The shift of the optimum VEC towards lower values can 
qualitatively be explained with the method of moments.[' '. 221 

Differences in TB bond energies of two structures are controlled 
by differences in the higher moments P , ~  (n > 2). Such differences 
originate in simple structural features. Of most influence are 
changes in p 3 ,  and this particular moment is determined by the 
number and form of three-membered rings in a structure. A 
large number of triangles has the effect of producing a large 
1p31, and usually the larger 1p3( of a structure. the lower is the 
optimum VEC for maximum structural stability. For  low values 
of y the puckering procedure does not influence the number or 
form of the triangles, and so 1p31 is almost constant. With in- 
creasing puckering angle, additional interactions between net- 
forming atoms situated in ncighbouring chains a t  the same 
height are possible, which enlarges the number of triangles. The 
accompanying increase in 1p31 changes the optimum VEC to 
lower values. 

3 D structures: Figure 9 shows the contour maps of the TB bond 
energies for the two sets of 3D structures. For  both sets the 
optimum VEC for the unpuckered structure is about 2.5 elec- 
trons per atom and increases to  a value slightly below the ex- 
pected three at an optimum puckering angle of 30". The change 
of the value of the optimum y compared to the 2 D casc is due 
to the change in the environment of the corrugated 3' nets in the 
3D structures. The stacking of the nets creates new structural 
elements (Figure 4), which certainly influence the optimum 
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Puckering angle [O] 

0.0 10.0 20.0 30.0 40.0 
Puckering angle [O] 

Figurc 9. TB bond energy as a function of VEC and 7 for the 3D structures with 
Immm symmetry (top) and Cmcu symmetry (bottom) (cr. Figure 4). The location of 
the minima iii-e indicated by solid circles. Contour lines are calculated relative to the 
minima: the difference between two lines i> 0.2 eV. 

puckering angle of the corrugated 36 nets from an clcctronic 
point of view. Besides, by assuming that the a-Ga structure 
follows the building principle of deltahedral clusters (e.g. short- 
er distances to terminal atoms which have bonding interaction 
with only one net-forming atom), a 3D structure can only be 
built up when y l 3 0 " .  Hoistad et al. performed a geometry 
optimisation of the experimental a-Ga structure with the same 
TB model; they were able to  reproduce the experimental value 
of the puckering angle, but obtained a tilt angle that was slightly 
too large."] 

Again, changes in lp31 qualitatively accounts for the be- 
haviour of the optimum VEC as a function of y. The unpuckered 
structure has a large 1p31 as it contains interlayer as well as 
intralayer triangles. During the puckering procedure the influ- 
ence of the latter reduces gradually, and so 1p31 of the puckered 
structures decreases until, analogously to the 2 D case, addition- 
al interlayer triangles arise. The lowering of l p 3  I stabilises the 
puckered structures a t  a VEC of around three relative to the 
unpuckered structure, and the values of the optimum VEC fol- 
low these changes of 1p31, as the structure with the higher 1p31 
has its stability maximum at  lower VEC. Along the structural 

route described by the puckering procedure, the model structure 
of a-Ga is the solution with minimum 1p3/  and, on the basis of 
this fact, Lee et al. developed an alternative interpretation of the 
cc-Ga structure."'] In contrast to our focus on the locnl ( 1  + 6 )  
coordination of the atoms in this structure. thcy cmphasise the 
relationship between the number of triangles of interacting 
atoms and the VEC. Hence, the a-Ga structure is the result of 
optimising the number of triangles for a VEC of three. Com- 
pared to the simple packing structure types fcc. hcp and bcc, 
which are stable a t  lower VEC, the number of triangles has to 
be reduced when considering sp-bonded systems. 

In the TB approach the higher symmetry Irrirnni structures 
appear to be more stable than the corresponding C m u  struc- 
tures when y>15". In Figure 10 the TB and FP-LMTO results 
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Figure 30. TB bond energies at optimum values of V E C  (top) iind FP-LMTO totnl 
energics (bottom) for the 3 D model Ga structures with Immm and Cmco symmcti-y 
as a funtion of ;I. 

are shown for comparison. For the structures with y > 15' the 
energy versus 7 curves look similar to the TB curves and show 
an optimum y value of about 30" for the immnz structures and 
about 32.5" for the Cmcu structures. However, the Cmctr struc- 
tures lie lower in energy and the minimum at  ya32.5 '  corrc- 
sponds more closely to the situation in the experimental a-Ga 
structure. The TB bond energies obtained with the second mo- 
ment scaling procedurer7, gave reliable results for the opti- 
misation of bond angles, but failed in the prediction of the 
correct ground state for structures with different symmetry. The 
numerical results from a TB model can certainly be influenced 
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by the choice of the atomic parameters and the approximation 
of the repulsive 

In Figure 2 2  we show the total energy as  a function of the 
atomic volume for the experimental cc-Ga structure and for the 
Ciizcu and Immm G a  model structures with their optimum puck- 
ering angles of 32.5 and 3OU, respectively The distortion from 

o m-Ga (exp ,298 K) 
0 Cmca model (32 5 " )  
0 lmmm model (30") 

I 
18.0 19.0 20.0 21.0 

0.46 I , 
1 7.0 

Volume (A' Patom) 

Figure 1 I ,  Total energy differences of thc ('nicn and Ininini model structurt's with 
optimum puckering angle and of the r-Ga structure as ii function of volunie calcu- 
lated with the FP-LMTO method. Solid symbols indicate the unrelaxed structures. 

the idealised Cn7c~r model structure with only one set of nearest- 
neighbour distances in the corrugated 36 net stabilises the exper- 
imental a-Ga structure by only about 0.005 eV per atom. The 
calculated equilibrium volume of the hnmn? model structure is 
about 5?40 higher than that of the experimental x-Ga structure. 
The energy difference between these two structures is about 
0.06 eV per atom. 

It is instructive to study the changes in the ratio between the 
total number of p and s states calculated inside the G a  MTS for 
the two sets of model structures (Figure 12). Comparing the 
bonding situation in structures of isoelectronic elements with 
four or fewer valence electrons, a high total number of p states 
is characteristic for directional, covalent bonding, whereas a 
high totlil numbcr of s states indicates a more metallic character 
of chcmical bonding. Thus the ratio between these two numbers 

0.8 
0 Cmca model structures 
0 lmmm model structures 

Puckering angle [O] 

Figure 12. Ratio between the total number ol'p states (N,) and s states ( N , )  inside 
the Ga MTS obtained from FP-LMTO calculations for the Imi?zm and the Cnirrr 
model sti-uctiire~ 

can be used as a measure of the relative decrease or increase of 
covalency in the complex bonding situation of structures on  the 
metal/nonmetal borderline. Figure 12 demonstrates the pres- 
ence of "maximum covalency" for the Cmcu and Irnrnnz model 
structures when the puckering angle is in the range of 30--32.5'. 
This fact indicates the importance of covalency, that is, terminal 
2e2c bonding, in the formation of the most stable model struc- 
tures under consideration. 

Concluding Remarks 

We demonstrated that the x-Ga structure follows the building 
principle of deltahedral clusters, which gives terminally coordi- 
nated corrugated 36 nets as 2D building units. Based on this 
principle it is possible to construct other (hypothetical) struc- 
tures with (1 + 6)-coordinated atoms at thc metalhonmetal bor- 
derline. The presented simplest case, a model structure with 
higher symmetry than the x-Ga structure, was found to be con- 
siderably less stable than a-Ga. Interestingly it is possible to 
transform this higher-symmetry model structure into the j - G a  
structure by a crystallographic slip operation. Recent scanning 
tunnelling microscopy (STM) investigations on the r-Ga(010) 
surface[231 and band structure calculations on the r -Ga struc- 

2s1 emphasise the shortest bond length between Ga 
atoms as the main structural feature in this system. Thus. x-Ga 
is described as a metallic molecular crystal consisting of discrete 
Ga, dirners. In contrast, when classifying the short bond length 
as a terminal 2e2c bond, in analogy to deltahedral clusters, the 
a-Ga structure appears as a 2 D  metal. The optimum VEC is 
three electrons per atom. Boron, in the a-rhombohedra1 boron 
structure, realises an alternative, semiconducting solution to 
this VEC based on B, ,  icosahedra with (1 + 5)-coordinated B 
atoms. Gallium is a higher homologue to boron and will there- 
fore prefer higher coordination numbers in molecular and ex- 
tended structures. The structure of x-Ga still follows the build- 
ing principle of deltahedral clusters, but the increase in the local 
coordination of the atoms from (1 + 5 )  to (1 +6)  leads to a 
metallic structure. 
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